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Oit ym CAJCi\L~TION OF FLOVl ‘PAST AN lNFItiI,TESCREEN.
,. .’., .,’.. .

OF ‘THIN AIRFOILS*

By N. Pistolesi
... .

SUMMARY

~:.,’

The “present “:re~ort”deals with the flow. p.ask an in-
finite screen of thin airfoil (two-dimensional problem).
The vortex distribution across the profile is established
with appropriate expansion in series and the velocity
distribution lift, .rnoi~entt,and profile shape deduced.
Inversely, the distribution is deduced from the vorticity.

The method is the extension of the .Birnbaum-Glauert
method for the isolated wing.

IITTRODUCTION

The present repo’rt describes a method for computing
infinite screens of airfoils. .. ,,

This method is the natural but not immediate extension
of the 13irnbaum-Glauert method for isolated airfoils. By
this is meant that the object of the present study involves
screens of thin and slightly curved airfoils.

,’.
,.

.,

I’or’convenience the screen whose axis ($traigkt line
connecting the median points of the airfoil chord) is at
right angle to the chord. is called straight screen; that
whose axis contains the profile ‘chords, screen in tandem;
and that whose axis is oblique wi’th,,the:,chord;. oblique
screen, By the same definition %h&”obliouity of the
screen is the angle of .$he: screen axis with the direction.
at right angle to the bhord. “

,... . . -
*llSul,calcol”o di’ sc~liere” in’fin~{~ .~i ‘~1~ so~tili”.lt P.ubli-,.
cazioni dells’ R. Scuola ‘alInge&neria di,,~isa’~ (s”eVehth
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The tern ‘tchord” ~s ‘employed iri.”a?.road,,sense and it
signifies a straight line a I,ittle distance from the pro-
file in referegcs to which the ordinates of the several

.. points of thb profile itself are measured, without impos-
ing that it connect the extreme points or other conditions
of the kiad.

.,
I. THE STRAIGHT SCREEN

1. An infinite screen of equal and equidistant vor-
tices disposed on axis y, with circulation I’ and spat-
in.g h induces in a point ‘P of the ccrordinate z = ..
X+’iy the velocity ,

w
i r ‘~,coth ‘~

.w=-
‘2h~~ 2n(z-nib) ~= h

(1) -

corresponding “to a complex potential

~=~lnsinhnf’

“(the axes are orientated as in fig. 1).

On a point of axis x. we have:

.,,

w. = - ~ coth.~ [~t)
2h .

..: .“..
Denoting the components of the induced velocities by

u and v.,: ~~.put
.,.,

w = U:-,iv ‘

whence it is re”adily seen t-hat

u= o “
llx””

T=— :h coth.—,, h, . :’

Assume now that the vortex distribution follows a
law Y = f(x) along the chord of.the airfoils of the
straight screen.

Simply suppose that the wing chord is of length ’21

L . 1
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and contains between x = -1 and x = 1.,..,.,.., (fig. 2). Then
the induced ”v-elcibltyof the whol-e-:screenon axis x is:

2
1v=—

f

Y dx! coth
m(x-xl)

(2)
2h h

‘-2 .,

Then we put

.. \

which readily yields

(Tlx -n-x I

) _l-gfl
coth —- —

h h [ - g’

and hence

-,—A

where

We next put

E.—=.
A Cos e d?= hsin8’d Cl

and find:

,,
,>., ,,,,.’:C, ,.

i

(3)

(4)

(5)

(6)
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.. ’n,
1 ~ l-~,2coS Q cose-t”‘ sin f)f“ ,Y

v’=-

3T0...968

qi cos e;- cOse
o

(7)

It is interesting to note that the first of the two
iutegrals of equation (7) is a function of e , and con-
sequently of x, ,,while the second is independent or rep-
resents a variation of the constant incidence.

;/e then adop.t.#QT Y = f( 81), in Glauert 1s example,
the series expansion

Y = V(ao cot
81 m
~+Zansinn 01)
,4 1

where V indicates the asymptotic velocity along-the
positive direction of axis x, and Yo, VI,... ynl.., the
single terms of the preceding series, and vo,m V~. ..V*.* ●

the corresponding values of v, so that v = x Vn.
o

In addition, Vn = Vnf + Vntl where Vn 1 is the

part related to 8, Vnt’ the part not related to 0.

~sinO1cote’
l-i

a. V a. **
!

-
‘o =Vx

1

2d0t=V~ /6 1+c0s0~d81=~
cOset-cOse

I
Co$et-cose

IO ‘“o

VaoA ( m l+cosel n
1+ Cosefvolt =

Ir
d8t-

!
)

det =
4TT l-Acosgl l+~cOseI

/-u
o “o

*For the calculus of the integrals in these formulas, see
the.appendix at the end of the report.
**20r. Vo 9 the first part VO1 itself is independent of

,,.,,$-as%+.?0.
& .,.,&,x,-... - ...4...,,.— 1
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(8)

Similarly, ,.. ,

J
Vanh 0 mVn 11=

{f
tit ‘inn ‘t d fjt-

r

sin et sinn 6td ~~
411 1 -. A Cos 8’1 “l+ AC OSO1 }

‘o “o

v anA ~ ~othnt
{ (

~ tanhn ~+ -tanh, !&
n

=
)}

o (n is Odd)
= V an tanhn~ (n411

2

is even)

and hence

V an

(

o

)

n is odd

‘n=~- cosn El+ (9)
tanhn ~ n is f3ven

And finally, using X1 to indicate that the sum is
extended to odd values of n and x “ to indicate the ex-
tension to include even jvalues:

~t = Zvnt = ~(ao -~ancosne)
2,L

F I

1

tanhz ~ m
v II=~vnll = ; .2 a. + ~11 an tanh.

n IT1
‘, 2 Ill ,2 ZX

l-tanh ,=

.,,
or, by expansion i’n series:. ~ ;,

~ ~l](an + 2..ao) tanhn ~Vll = I

., .!.. ... .,. ..,, . . ,.,.
2. Now the circulation l?n corresponding to the vari-”

ous terms ‘Yn and hence the complete circulation r=zrn
can be computed.

It is:..
1“

I’n‘=

f

‘yn’~~:: .

c-l
:. ..;
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,dx=Q ‘sine d &
IT ~-~z c0s2e

and therefore

. v

and

‘Yndx= van Ah

‘n

rn s
r

sinn, esinf3

./

-de
‘l-r 1-A2COS2 e

‘-?? ~ “Jo
“o

I i_______\ 1 (11)?
=Vanh

i tanhn ~ (n i$ odd)

CD \ (12)

= Vh Z!(an+2 ao) tanhn=
1 ~~ I/

The velocity at infinity (negative for x = -m,
positive for x = +m, bu!t equal in both cases in magni-
tude) is readily obtained from:

rv~l
VW = —=- & (an + 2a) tanhn ~

2h2~
(13)

l?rom the foregoing we can now draw some in~”erences
about the differences between the direction of the tangent
to the profile on the trai,ling edge and the direction of
the velocity at CJ, a difference which, may be termed angu-
lar exag,?eration of the blade screen.

In effect, the trigonometric tangents of the two an-
gles are expressed ly v(n)/V. and va/V and their dif-
ference 6 (which, knowing the assumed smallness of these
angles, is d~ssipated in the difference of the angles) is
expressed by

6
V(n) - v~=

-v

where V(n) indicates the value of v for 8=TT.
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i,

., Likewise, 8 can he considered-as the sum of s~,
each 8n corresponding ,t,o ~n; whence follows

(1 6)

3. If the flow velocity has a component -v Si
on axis y, the shape of the profile remaining the
ao may change in such a way that the V. do not ch
In other words, a change in a. does not change the
cidence of the profile.

na
same
ang.e
in-

In the case where there is only a. and all the
other terms are nullified, v Wquld also remain constant
and the wing would be flat, with an incidence a, ex-
pressed by

(17)

or

= 2it 1
a. (17’)

cosh &

and with the known formula (reference 1$ p. 96) .

r. =2mVlafitanh& (18)

or, in comparison with the isolated wing, the circulation,
and henc& the lift, would be reduced in the ratio

/

tanh - ~. ..
hh

In the general case equation (18) is still applicable,
but the absolute incidence is expressed by

\m.,“. n Tlt~1 an ~anh ~
a. Trl 1

\.

u=— 2 ,,Cosh -K- + (19)
Tll2 tanh —
h“
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We now ‘have for. lift P:

P prv 21Tp V21ak ( 20 )

with k sign ifying the re du,ction ratio

tanh &
k=

ITl

-Z-

(21)

4.
w in

roceeding
we have:

to the determination
.

of the shape of
the

v-=
v

cosh z “
an

-ii-

:. .

t anlin Trl

z z n6i- Cos

and so, as in the case of the isolated wing:

Q
dx

( 22)d 0an Cos

It is un,derstood that should he expressed in

relation to e.

Practically, given Y (and hence )as functiona

of x,
tion

we can pas s from

Cos e

x:

=-

to

tanh

tanh

f3”b

Trx
~
ITl
li-

Y means of the rela-

Example
the first th
obtain profi

-. - In
ree te
les of

ority of cases the evaluation
the series will be sufficient
an”d double camber.

the maj
rms of
single

of
to

For n o, it is simply

dyo

Z-

a.

%-

“Trl

I-
cosh

which represents a strai

For n = 1:

gh line of inclinati cosh ‘ml—,
h

t on
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> –. .,,.,
dy~

3c?s.e I al Asin Cld9—=.
dx”2’

“yl&- ,,~ Cos 8.$
1 - hzcosa 0

from which, after’ integration, follows
.“

Y~ 1,—=
1 al In cosh ‘~ + K

ITl Trl
2 ‘Z- ‘a’nh””’T

Curve In cosh ~ is shown in figure 3. ‘.

For n = 2:

dyz—= ~ ITl
~tanh —-~cos2~

dx 2h

which, integrated, gives:

Y2 = a2

— —.

~ tanh 2 Ill t

h -E-
sinh2 ‘~ I

!?he second term represents a constant inclination;
{. .,::,.:

J
the first, proportional. to tanh ‘f, has the shape of the

I

~
curve in figure 3 and is repsonsihle for double camber of
the profile,

~,

\
\;:
/,

If”the three terms are present, we have
H’

10

for 1 = h, for instance, it is:

,, ~1, . t,. ”
“. ., ~.l ..

=IT
.-.~.= ‘.’. .,.,

arid “e
T ,.” .23:

L —



10 NACA Technical ?lemorandum No. 968

Restricted to the first term, it is:
-~

h
6 e=a—— _l_=“

Trt 529 a
cosh —

h

The second reaches 0.041 al and the third, -0.08 a2.

5. We now make the comparison with the theory of sub-
stitution vortices (reference 2).

In the case of the flat wing (excluding self-induced
velocity, disposing the vortices in the forward neutral
point* and computing the induced velocity in the rear neu-
tral point) it simply gives:

r P
7T1 L

~1 = — Coth — _ — . Va
2h h 2’rT1

and on the other hand:

Therefore:
-n
i r ITl r

-— — coth — - — - Vu
2Trl = 2h h 21-r1

whence

which is the same formula previously worked out. l?rom
this it is conciuded that the method of substitution vor-
tices gives, for the flat wing, not merely approximate
but exact results.

In the case of the cambered wing ”’(single camber)it
is observed that the inclination of both the leading and
trailing edges tal/2. Now , in the case of the isolated
wing, an equal inclination is obtained with an equal value
of al to which c.orres~~onds a moment coefficient with re-

spect to the forward neutral point, of ~ al to which
8

*The term ‘lforward neutral point” and ‘Irear neutral point”
for points situated at qu~rter+chord length from the tip
was introduced by .Ki.issner.
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corresponds a doublet M = ~“V 12 al. According to the

general pro”cedtir”eof”-substitut-ion iortices, it happens
, that we can compute the induced velocity in the rear neu-
tral point of a screen of doublets (exclusive of that on
the wing). But it is readily seen that the symmetry of
the vortices with respect to the origin is such that the
center of gravity of the circulation remains in the same
origin for such ‘a wing. In consequence’, it is sufficient
to consider the itiiiucedvelocity of a screen of vortioes
disposed on axis y.’ We will have:

. .

Other than th:.s, the form of the profile produces a
change in the inciti.ence, or, what amou’ats to the same
thing, a change in zero lift direction, given (for isolated

wing) at ~, As a result:

~

L
A comparison with the exact formula

v al h tanh I-rl
z

shows the approximation to be no longer satisfactory despite
the fact that the ratio nl/h becomes of the order of
unity or higher.

It is interesting, on the other hand , to notice that
the rigorous result can be obtained by assuming the induc-
tion of screen vortices to be reduced to half. In effect
then we have:

(
coth ~

rl= -lltrl~

1

1 ‘.1

J

.—. +2Tllv~
2h Trl

from which the exact value for rl given above can be
readily obtained,
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6; A convenient andsufficiently approximate method for
the practical prediction of the characteristics of a wing
of ‘given shape is that of stopping with the first,three
terms of the series., and deriving the coefficients of in-
clination of the tangents to the profile in three points -
1, 0, 1, by the 13irnbaum method.

Denoting the inclination of the tangent in a generic
joint x, with ~ and the inclinations in points A B C
(leading edge, trailing edge, and center of profile (fig.
4) with (XA, aB, aG, we find:

a. ‘RI al a2 ( 2 Ill
aA=~cosh~-— 2 ‘T

- 1+ tanh
z )

a. ‘ml
cosh —

al
cZB=—

2 h+~+ (Y-
1+ tanh2 #

)

a2

(
ml’1

Z-
1 + tanh2 —

2h ]

a. Ill
a~=—

2
cosh —

h

from which we obtain

0+-J ~A + ~Jj 1
a. = -i-

7TI
cosh —

h
X cosh’~

al . aB - aA

UA + UB
a2 .aC-

2

and from equation (12):

2 2771
cosh —

2h

r

.“(
tanh &

r =Vh ac
ITt

+ 2 ~B tanh —
cosh 2 nl 2h

Z%’ }/

or, better:

(23)

.

‘tanh ~
J aB + mc aB - ac

r= 2Trlv—

1

l—— tanh2 ~

)

(231)fi 2 2
h
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c?+~ + q-j
In this very simple formula ——
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is the angle

of lift for the isolated wing. The secon,d term in paren-
theses disappears when h/1 —>> “o , while the reduction

factor tanh &
/
Z& tends toward 1.
:h

Equation (23) or (23t) can be used foT all practical
cases of the straight screen.

It is noted that in place of equation (23) the fol-
lowing procedure may be adopted: TO compute r as the
sum Of I’. and ~1 each computed by the method of sub-
stitution vortices of which at n. 5, allocating to the
profile incidence

ac
in the calculation of r. and

incidence aB - aC in the calculation of rl. It is
2

easy to see tliat the two methods lead to the same results.

7’. The prediction of the mom,ent is more complicated.
The moment M about origin O (center of profile) is ex-
pressed by

M= pV~Yxdx.
-2

but the expression of x obtained from equation (3) and
equation (6) is too complicated for direct integration.
It is more convenient to expand x in series of cosines.

Fosted, that is to say:

x =hn cos n 6
1

we have:
m ~
#n

bn=~

I

x cos ne d.8 = - ~ r h?isin n 8 — sin 6
d8

l-l mn l-rl-hacosa e
:0 ~-‘0

which is easily obtained By integrating by parts; and, fi-
nally,

u
o ... for n even

I



. —. ..—.

Then: ‘ “
,,. ‘., .

x= . a ;f& t~~hn ~~~cos:ne
n ~n

and, coilsequently, with the” usual notation:

l-r

[

8 “~~f> tanhm ~~
M& .-~pV2A a. 1 sin ede

co% ~ ~1, m 2h
cos me

.Jl - A2c0s2e
co

In particular,

(24)

The point of application of the lift is obtained %y
dividing M. by P. = p V2 aoh sinh ~, whence :

X. = - # coth !n~ . In cosh f’Q
h

(25)

or else:

tanh ‘~
1- h~ ~ tanh

3Trl+l 5 ml
‘o = - ‘.’ (1+ ~ tanh

)
—-1- .*., (25’)

l?%2_~ T h ‘

h

It is seen that xo->~ for ~+0, whereas it tends
-2

In other words, the ,aerodynamic center of the profile
for the flat plate is shifted toward the ieading edge so as
to reduce the spacing (h) of the screen.

As for the moments i~n, we immediately have Mn = O

for odd n, as is shown by the symmetry “with respect” to O
of the flow distribution, while for even n the moment is
other than zero, only the complete circulation and the lift
being zero.

&II is easily determined, when bearing in mind that
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I-T ‘“ ,,. ....,. ... .’

-----

‘------’r
..—cosn O ~-e-for n<~ .is identical to that ob-

i- A2c0s2 e
... .. ‘,,

“o ,.:.

tained for the same value of n with changed sign. a’s
distinguished from that obtained with the material appl5-
cation of the formula that gives the value of the said

(integral lIT ‘% tanhcosh — n l-r%
)

for even n’
h EK ~

Therefore:

Mn = - $P~2 an A ~t ‘~tanhm~ (Jm+n-l + Jm-n+l- Jm+n+x-Jm-n-~)
lin

after posting (see appendix)

l-r

Jn = r cos n fl
dO

l- F’cos2t3
“’”;O

Thus we obtain:

where the + sign is vaiid for m< n-1 and the - sign
for m >n + 1.

For n = 2, we have:

[(Mz = ~ p V2 a2 ~~
1

tanh2 ?&-
) (
in cosh 9+2 1+ tanh2~

tanh’~ )1
L

[

2 in cosh &
Ma = ~p V2

ITI
a2 cosh — -

h
sinh2 @.

h

1 I

1+—
Trlcosh2 —
2h

or, i.nmore exi>ressive form:

2 r-
(1

~anh4fi
tanh8 ~

Ma = >p V2a2 tanh2 & L 1+ 2 tanh2 @. 2h +
2h (~+ +

395, )1!5”7 ““-J

2’ 2’:’
For ~ S O, M2-+ ~- p V az, “the value character-

4

.. _ .- .—
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istics. of the isolated wing, while for ll~dm,
2

M2+ o.
,.

:Since a variation in incidence cha@&s ‘“a“’” only,
the point X. previously obtained is such tha! with re-
spect to it the m:o.mentdoes not cha.ng.ewith the incidence.
T’hisisb moreover, .the.aerodynamic &enter of” theprofile
of the screen.

IIC THE SCREEN IN TANDEM

,,8.!The treatment is wholly similar
straight screen.

to that of the

The induced velocity of a scr’een of vortices with
equidistant h arranged on axis x (one of the vortices
in the origin] is

-E ir
w=

–~ 2Tr(z - n h)
.
and hence in a point “on axis

., ‘v =J- cot
2h

i~ nz= ——cot—
2h 8 h

(2?)

x:”

‘nX

h

With the same notation as.before, we post:

tan ~ = ‘1-rx
.(

$ ; “cot -~ -y)=~
c-’ c’

4-, , ,’

hence:
m“

1v=— r l-!-?/2cos (3Cosa! sin~ t
21T Cos or - Cx “ 1+7\2cos2 e’

and, after simple transformations :
. . ... . ., . .

....

~2 ~ sin6fd0s9t yd 8:in

J

sin et
v=—

2n
7d.6.i- —

cos’&J ~ c.Ose
J

21T,
z

l+AZcos,et,
o“ “o

(27’)

(28)

.—
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wherefrom, after posting
. .

‘Y (=T a. cot
)

~+~ansinne
1

. . ,,.

we obtain:
,.....,,

1 SV: n a.
‘o ‘o =v—

2 ( )
Cos”+-1 vo=v~cos:

f an
‘n = -VT cos n’e

{

-v ~ ~~nn ~
2h for n

ll=.
‘n

.0 for n

and finally:
m

VI =~(’a4Zancos ne2’\ol )
(29)

as in the case of the straight screen

or else

Vm~11 = _ ~11 in(an + 2 ao) tan n 771
22 %

AS regards the circulation, we. have, correspondingly:

ro=
ITIV a. h sin ~

~ ~n h in-l t~~n U
-(

for n
2h

odd
rn =

Lo for n even

and finally, for the flat wing:

a formula similar to equation (18).

(30)

(31)

‘ (32)

even

odd

L. b. —.



The tandem arrangement amplifies, as is seen, the
circulation consi~erablye

Similarly, we can study th,e shape.of profiles corre-
sponding to the various terms of the circulation, which
is omitted here for the sake of brevity.

9. The comparison with the theory of substitution vor-
tices remains to be made. For the straight wing, the
vortices being disposed in the forward neutral point, the
induced velocity iti’the rear neutral point is:

and

r=- 2Tl a v’ -

wb.ence:

_r ..rcot,-r—— —-VCL
2ml 2h : h 21-r1

from which we obtain equation (32).
...

In thi,s case also, the results obtained are not
merely approximate but exact. And as for ‘the straight
screen, exact results are obtained for cambered wing by
disposi~g a screen of vortices in points in the center of

.. the profile and reducing ‘the induction by one-half.

For the sake of brevj.’ty,other similar considerations
for the straight screen are omitted inasmuch as. regards
the practical calculation of the lift in relation to in-.
clinaiion a~,CLB (ZC, shape of profiles . and calculation

of the moment.

III. THE OBLIQUE SCR3KGN

10. Let B ‘signify the obliquity of the screen,
defined as the angl.e..thro,ughwhich axis y’! containing
the vortices must rotate in order to be superimposed on
axis y (fig. 6). ‘

,. -
,.!, . .

. . . . . . .
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To pass from y Teferred to “axes Xlyl, to w

ref errei-t o axe s---x y v --i-t--is-su-ff*ti-i-Ont-to.pos* in the.
complex potential

iP~i =ze .’. .

:Thus:

.,-

,..
.,, ,.,

.’
*zeip ‘e’ip

w= - ~ coth —
2h h :,..

(33)

In a point on axis x, the ,value of w is simply
obtained by posing x at tbe p.ositio~,,~of z. The value
of” w is complex, hence there is a real component, that
is to say, along axis x, which ie,,neglected, and an
imaginary one, that is, along axis Y, which alone is of
interest. ,:,.

(34)

E—=-
?\

cos 0 (0 complex)

and merely follow the procedure step by step,as for the
straight screen.’ Thus

.,

““YO e’
= V a. cot ~= V a. l+cose,

sine
..., ,, ,..........’.. .,...,
‘Yn =“”V a= sin n 6

..

with complex a. ,and an. Beside,s:...b .: ,.
I

i

.

2*

ieip T
w.=-,— ~ ~ d~~ )( Coth ‘(x-x’)eip

2h
J

h,
‘_l ., - “

,’ ,,.
whence

l-- -, ...,..

ri. ‘1-A2cosecos6t :X.sin !?? ‘Yd ~t
w=-—

2Tr Cos 6’ - Cos 9 1-?$2COS29:’
,,

,“-.

.’ It follows “that: ““““
.. ... ..’. .,.



,“

. . ... ., ., .,
ivao:~ Ii.= -’ i,V a.

(
Cosh &:; ’1).‘o=- 2

; Wo ..
2

.[35)

and , .-on the whole:

t’vo= iva Q lllei$cosh —
2 h

Similarly:

(iVa ,“ o ‘n
wn=-’2m. -Cosne+

~anhn ~~e

)

i~
n

:,
\ 2h “’

.

(36)

odd
(37)

even

Proceeding with the calculation of r (generally com-
plex) , “we find:

i@
‘r. = Vhe-ip a. sinh~ -’ (38)

(‘cl n even
17n = Vhe-iP an

1-

~anhn ~le is (39)
n Odd

2h

The t“otal 17 must * of necessity, be real; in effect
it contains an imaginary part which may represent a total
source other than zero, which is naturally not admissible,
forcing the wing profile to be closed. Then we would have

where & is the imaginary coefficient.

11. The presence of a source distribution across the
chord prompts us to attribute a certain thickness to the
profile (E. I?istolesi - “Theory .of Thin Airfoils” - in
course of publication). We can, however, obtain the shape
of the “dorsal spine!t of the profile by the canve~tional
method, namely, by ascertaining the ‘vertical dom.ponent of
the induced velocity’ ,.
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dywhere. ‘R indicates the real part; and we put ~ = ~.
. .

~o.r fyo,-
,.,..–.,...,

9- resul”ti-ng from vo, it’”yiel’d$’ the recti-
r

mleis,. 1linear profile with incidence .+, a = ~ R a. coth — “
h

?

the yn have curved profiles, from which th~ curve can “
also be computed; but for simplicity
development is foregone.

If it is the only term in ao,

) eip

a. = A.
mlei$

sinh —
h

this very complex

we should ‘have

(42)

with A. real, and then it follows that:

(43)

In general, the inclination of the profile for G =
n (trailing edge) can be calculated. It is:

For ~,
rcOs 13

we find: Vm =
2h

an n nleip ‘-~” an+~’f an tanh —
2h/

* or:

or else, since the part in brackets is itself real:

whence the “angular ex~ggerationll 6 follows at: ‘
1> ,.

{

-inlei$
nlei~

+ for n
8

odd
AR ,aoe h

(
&Yan 1 - tanhn —

‘2 2h )} - for n even

(44)

—
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12.” A !nethod”for ‘verifying that equation (40) is
satisfactory is to put, as previously done in the case
where ao onlv is other than zero (equation (42)) :

e
ij3

= A.ao , .,. .
Sinh.nle’p

h

and in addition

ei~
an = An

tanh
n ~lei~

2h

,’

(An real)

\

.

J

(45)

In this case:

r= Vh (A. + ~1 An) (46)

In the case of the flat wing, “the lift reduction fac-
tor can be computed much more simply. In fact, posting
....

r “= 21-rlvcdz (47)
o

where k is the reduction factor, leaves

~
A. h l-r:

k=—— =
~ 2Til R ~eip “Coth ~~ei~

(
● )

hz”

(48)

and by simple calculation

(49)

or else:
‘21rl

Cosh(+ C“s @) - Cos (T ‘in p)
k=~ (49})

?T1

(21T1
) (

21T1
cos P sinh

T
Cos @ + sin ~’ sin” ~ sin @

)‘.

Formula (49) agrees with that by Numachi (reference 3),



accorditig “to a,method previously indicate? by Gramm~l
(reference 1) , with the difference. that .the.~~umach~-

, Grammel procedure &o’es”-not” exac”tly’ fit’-the ’’flat wing;
but rather one with slight camber.*

I/e can finally verify, for the case in point, the
method of substitution vortices.

..,.
The vertical induced velocity in the rear neutral

point of the screen of vortices concentrated in the for-
ward neutral point, the self-induced velocity, is

r
(

mlei~ rv=— R ei~ coth -
2h b ) -Z-i

On the ‘other hand, we have:

r= 21T:.-(va-
“)’M

~ R~eiP coth ~
L \

from wilich equation (48) follows. Again the method of
substitute vortices insures exact results.

It will be noted that every change in incidence,
without change in profile form, results in a change of
a. ; even the Aao corresponding to a change Aa must
have the form (42), which must correspond to a zero lift
source. However, in general, equation (47) holds true
for r, or :

,.
r= 21-rlV!u k (50)

.-
the terms ai ~ az ...(and hence the shape of the pro-
file) affec~”~nly the position of the zero lift curve
whose angle of lift a must be computed.

..., The metlxod of substitute vortices can also be applied
for obtaining 1’1, if equation, (45) is taken for al ,

?Zt should be remembered also that Grammel*s curved line!>.
is rather one-half the profile, the other half being’
formed by the symmetry of the first with respect to the
chord; that it involves a flat rather than a curved pro-
file of a certain thickness, which is more clearly shown
in the treatment of the present study.



. .-———...—.-— ... . ..—... ... . . . . . .

with-the. single cdnd,iti.o”n,,that “the. screen, of votitices rz
are ‘place,d:.in !the centers of ,profiles’ and the induced ‘
velocity is ha3ved’.. .“ . . .

....,.
We have , in fact :

... ,.” .. .

where “al, the natural. incidence of th’e curved profile,
is given by

al =
~“ VI(0) + Vl (’n) 1 It(al)..=_
2 v 4

from which follows:

R(al)
rl =

(
nleiBR ei~ coth —
2h )

Vh

or, with equation (45) for al,

,.
conformable to eq-~ation (46).

-In general, the method of substitute vortices is ap-
plicable by computing 17 as the sum of I’o’”‘and I’i;
giving the profile an incidence a. (fig. 4) for comput-

aB - ac
ing r. and incidence for computing I’l. It

2 ,.
affords , ,, \

T .,

J
~..— 2h ‘“”

r= 2nl,V .ac Tfl. a~-~-j ,

“.1.(

+

R’ei@ co~h”@&. ~
---Z---

(
R eiP c~lh ‘~)

‘h
. . Zh.

,. ,’.... . (51)-“1.. . .
..

.,, ... ,
..: . ..’

.“, .,..

.—
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13. The practical calculation of the aerodynamic
characteristics of a given airfoil can be carried out by,,.......—..
stopping’at “the first- three”’”ter-ms”of”‘the “expansion of Y.

Equation (40) supplies, however:

( lltei$
i$

J_ aoe-ip
-ip nle

sinh —+ ale
h

tanh —
)

= o
2h

Moreovert with the notation used for the straight
screen, we find: ““

from which:

aB + ~~
ac - = R(a2)

2

a2 ( 2 ~leip
‘7 1 + tanh —

2h )}

( i$

)
aB+aA

ac 1-R tanh211L
( )(
l+R tanh2mteiP = R a. cosh~

2h + 2 2h )

?l?heproblem generally remains indeterminate; to make
it determinate two other conditions prevail (one, repre-
sented by equation (40)), which naturally must depend upon
the profile thickness.

Reserving the treatment of this point for the next
paragraph, let us see what the results are from proceeding
on the basis of equation (45). We have.:

1(52)



.. ,”’
,. ...,,. . Cl@ ‘“:~’ - “’,.

A==”. .:. “- ‘ . .. . .
.. . .. .

.: (
i~ “’

“~’ ~i$ ~Oth gte ~
2h )

. .

and, substituting in “equation (46)-:

where k is expressed by equation (48), and

2h
m

ICI =

R (ei@ Cosh ~~e
‘i(3

2h )

(54)

the same k in which ~ 1
2

replaces length 1.

Zquation (53) coi~cides with (5?.) when a2 = O and
hence (CB - (xC) + (aA - ac) = o. Other forms into which

equation (53) can be transformed are omitted for brevity.

14. It will be noted that, with the effected position,
we have as a value of the source for x = O, or for 0 =
1-r
—9 the imaginary coefficient of V “ac
2 (

~)cot ~ + al sin —
4 2]’

“T~is source intensity ~efities an inclin&ion of the
tangents to the profile od the Top and kottom c$imber
i~ith respect to the tangents to the center line givenb.y
16——
2,V’ and’

in consequence, an angle T between the two

quoted ta~gents (fig., 7) given W*

Such values of T...’are termed To ● They vary, as is
seen, with the incidence, Sirice A. itself varies as the
incidence varies.

*Anglq T is positive when the nose is to the left.

I—
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The ensuing solution is a special case. I’u generaz,.. .,——. .. ... . . .... ... . ... ,-.. ...-.,.

nleii
a. = (A. + i Bo)ei@ cosech ~... ....

*P .:
an = (An + i Bn)eis cothn ~

2h

should replace equation (45).
.,

,. With these positions, equation (40) becomes:

B. + E? Bn = O (56)

while continuing the evaluation of equation (46), or:

~ = Vh(Ao + z! An) (46)

Stopping,: as usual, ,with the first three terms, and
posting, for simplicity of notation,

eip ip
coth ‘te = PI + iql

2h

ei~ coth nfi= Pn + iqn
2h

(
/

in which k = ~ e kl . \,,211
)

we ob,t,ainin place of
Tllp Trtpl

equation (52) the following:

,.
‘aB L ~A = AIP1 - B1ql (58)

(acl- -+)+ *1+ R ‘a”h’*) =‘op-BoqR tanhz ‘~eiB

. . ,
(60)

Thess formulas are then supplemented by that obtained
by angle T, which, if it is considered thtit
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. ..”

coth
iiei~
2h

- Coth

... .,.

l$lei$
h

,.

-+

,:..

is written

Blpl

cose

-.

ch

T

.-
ip“Tile

h
as:

.

‘q) + BO(PIAo(q -1- (61)
1

jj’~om(56 fib.aliy follows

BO+BI=O
.,

After -B,z is substituted for
(GO), and (61) give three equations
which, resolved, give:

B., equati
in Al, Bl,

(58) ,
d A.

(62)

A. + Al

on~
an

(A. + Al)o + M

T

and

-rJ= o

. To

To

.= o

Bl

ndi

an,,

IT

cat

ii.,

J

the val

sides:

Al)o
r B1

where

and of

(A.

T

e

be

ue s of

qi q—.-.—
pl P

i’1”-tp - q2
37

(63)

-As to To, its value in ( 55) can be writt en
as :

.

{ ac (1\ tanh2 )+
+ aAa3. .-
2

tanhz
>

+1 ))Zii
To -R I?-t

+ ( ,aA)’& (64)

For the pr?file of

aB + aj
hence ac =

2-
,’

single camber, .SO

‘s it simply gives
,,,,.

that az o

and

To 2 ql-q

P
i- (64’ )ac aB

d finally:
. .

.,
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r= (1’)o+Vh:.A7
.....,.. ,., .....
.... ..

(65)

AT=T - To

and (r) indicates the value of I’ for Bl = o, given
in equation (53).,.

This formula’ shows that r. depends not only on the
form of the ‘tmean Iinelt of the profile, as for the straight
screen and the screen in tandem, but also on the airfoil
thickness or, if preferred, to the curve of the top and
bottom camber.

,, ., .
The problem is, as seen, ‘rather complicated and the

practical calculation of the oblique screen with is the
one that involves the propeller and the blades of hydraulic
machines , is necessarily la%orious.

15. A few words on the moment calculation. The ele-
mentary moment. with respect bo origin ‘O is P V R(Yxdx),
and hence

M= pVR/Yxdx

To effect this’ integration, x is expanded in series
by posing m

x= Zbncosne
2

with
-n

2:
bn =’=

J

x C05 m,8d8= “.--& r sim nO~ e-iP sin 0 de
n

Jo 1-A2COS28
“o

whence (- 2h e-ip tanhn ~~ei~— for n odd
,,bn.=1 mn

o
2h”

for n even
‘-.

Proceedi~g as for the straight screen, we find

h2 V2 ~(a ..,~~$
cosh ~

i~x
M. = -p { Oe in cosh ~

l-l h )

If it is assumed that

ao = A. eie mteipcosech —
h

,,,,,, ,,. , #,----



the result is
.. ; . .

,. .’.’... .. .

2 V2
is

Mo=-p k------A. R fe-i~ coth ~ nlei~- ,in Cclsh -
11 x h h )

7“,

and now the point of application of the lift is ch,aracter-
“’ized by: ““’”’ ~~ ‘

...,.

M.
h R~e-i8 mteie ‘ nlei$” )xc) = ,~ = -.ii coth —

h.
in cosh —

h)
,, .:: :.,.

Simiiarly for M“n’:. ~.. . ... . .. ,> .,

~2 V2
Mn=p- R~(a e-i@ ~ “m vlemf tanh

i$

[

n+m ~lei~~ tanh —
i“r.. ..’~.n ... =“ m 2h

. .

.: .

wher”e the + sign applies to m ~’ n - 1, and the - sign
to m>n+l.

,.
For

the result is:

M= = p c-t- {
ip i~

An,R ~-i”~ coth?” -~ml tanhm nII
n 2h 2h

..-

.,
.
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-.....=. . .

.
APFENDIX

,.—, . L,. —..

The integrals used in ~’he foreg-oing study ”are as
follows: ~’

1) r--, cos n 0
d6=

msinn E&

J’.
Cos - Cos gl sin (3Z

The value of the- integral is that expressed %Y the
second term of the preceding formula even if 8 and 91
are complete because the line along which the integration
is made, starting from O and terminating at m, passes
through the point 0

1“

2) Posting h“ = t“anh a

affords
l-r

In =

J

cos n(l de

1 -Acose
“o

-n

In I = J‘cosned6

... 1 + A Cos g

. .
The a~ove integrals redu’ced to the form

,,1-r .

I
cosn Cld9 nnp,=

l+ps
o - 2 p Cos e .1 - p2“d

(See Laska, Collection of Formulas, p. 266), by posing

P=
l- J;- A2(p <l)=

tanh ~

3)
‘n

Jf
fo

cos n 6 for n
Jn =

odd
d~=~

1 -A2Cos20 ~?T cosh cc tanhn~
“o

for n even

Division of the integral by two shows how easy it is
to verify
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4)

[
o for n odd

=

1n coth atanhn~ for n odd *

L

5)
l-r

I o for n even

‘<

[
m cosh2a

tanhn ~ for n odd
sinh a

The above formulas for the integrals In, Itn, Jn,
and their derivatives, are equally applicable in the complex
field.

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.

*probabl~ an error.
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